BD 134 771 08 CE 009 775 AUTHOR Cooper, Gloria S., Ed.; Magisos, Joel H., Ed. TITLE Metrics for Sheet Metal Working. TITLE Netrics for Sheet Retail Working. INSTITUTION Ohio State Univ., Columbus. Center for Vocational Education. SPONS AGENCY Bureau of Occupational and Adult Education (DHEW/OE), Washington, D.C. PUB DATE 76 CONTRACT OEC-0-74-9335 NOTE 59p.; For a related document see CR 009 736-790 EDRS PRICE DESCRIPTORS MF-\$0.83 HC-\$3.50 Plus Postage. *Curriculum; Instructional Materials; Learning Activities; Measurement Instruments; *Metric System; Secondary Education; *Sheet Metal Work; Teaching Techniques; *Trade and Industrial Education; Units of Study (Subject Fields); Vocational Education AESTRACT Designed to meet the job-related metric measurement needs of sheet metal working students, this instructional package is one of eight for the manufacturing occupations cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already know the occupational terminology, measurement terms, and tools currently in use. Each of the five units in this instructional package contains performance objectives, learning activities, and supporting information in the form of text, exercises, and tables. In addition, suggested teaching techniques are included. At the back of the package are objective-based evaluation items, a page of answers to the exercises and tests, a list of metric materials needed for the activities. references, and a list of suppliers. The material is designed to accommodate a variety of individual teaching and learning styles, e.g., independent study, small group, or whole-class activity. Exercises are intended to facilitate experiences with measurement? instruments, tools, and devices used in this occupation and iob-related tasks of 'estimating and measuring. Unit I, a general introduction to the metric system of measurement, Provides informal, hands-on experiences for the students. This unit enables students to become familiar with the basic metric units, their symbols, and measurement instruments; and to develop a set of mental references for metric values. The metric system of notation also is explained. Unit 2 provides the metric terms which are used in this occupation and gives experience with occupational measurement tasks. Unit 3 focuses on job-related metric equivalents and their relationships. Unit 4 provides experience with recognizing and using metric instruments and tools in occupational measurement tasks. It also provides experience in comparing metric and customary measurement instruments. Unit 5 is designed to give students practice in 🤏 converting customary and metric measurements, a skill considered iseful during the transition to metric in each occupation. (HD) Documents acquired by ERIC include many informal unpublished materials not available from other sources. ERIC makes every effort to obtain the best copy available. Nevertheless, items of marginal reproducibility are often encountered and this affects the quality of the microfiche and hardcopy reproductions ERIC makes available via the ERIC Document Reproduction Service (EDRS). 's not responsible for the quality of the original document. Reproductions supplied by EDRS are the best that can be made from And the first of the first that the first Maring the spring form of the state s A the finally My franklik de de fantis fan de de fan fan de fan de fan de de fan de de fan de fan de de fan de de fan de fan My fantis de de fan And the first of t Mark metrics for sheet metal working US DEPARTMENT OF HEALT EDUCATION & WELFARE NATIONAL INSTITUTE OF EDUCATION THE CONTROL HAS BEEN REPRO-UNED PROVIDENCE OF ROM HE PENNEY OF MANDERSON ORIGIN THAT I THE MESSAGE FACOR OPINIONS THAT I THE MESSAGE FACOR OPINIONS THAT I THE MESSAGE FACOR OF THE PENSAGE FACOR OF THE PENSAGE FACOR OF T THE CENTER FOR VOCATIONAL EDUCATION ERIC Full Text Provided by ERIC 3 ## TEACHING AND LEARNING THE METRIC SYSTEM This metric instructional package was designed to meet job-related metric measurement needs of students. To use this package students should already know the occupational terminology, measurement terms, and tools currently in use. These materials were prepared with the help of experienced vocational teachers, reviewed by experts, tested in classrooms in different parts of the United States, and revised before distribution. Each of the five units of instruction contains performance objectives, learning activities, and supporting information in the form of text, exercises, and tables. In addition, suggested teaching techniques are included. At the back of this package are objective-based evaluation items, a page of answers to the exercises and tests, a list of metric-materials needed for the activities, references, and a list of suppliers. Classroom experiences with this instructional package suggest the following teaching-learning strategies: - 1. Let the first experiences be informal to make learning the metric system fun. - 2. Students learn better when metric units are compared to familiar objects. Everyone should learn to "think metric." Comparing metric units to customary units can be confusing. - 3. Students will learn quickly to estimate and measure in metric units by "doing." - 4. Students should have experience with measuring activities before getting too much information. - 5. Move through the units in an order which emphasizes the simplicity of the metric system (e.g., length to area to volume). - 6. Teach one concept at a time to avoid overwhelming students with too much material. Unit 1 is a general introduction to the metric system of measurement which provides informal, hands on experiences for the students. This unit enables students to become familiar with the basic metric units, their symbols, and measurement instruments; and to develop a set of mental references for metric values. The metric system of notation also is explained. Unit 2 provides the metric terms which are used in this occupation and gives experience with occupational measurement tasks. Unit 3 focuses on job-related metric equivalents and their relationships. Unit 4 provides experience with recognizing and using metric instruments and tools in occupational measurement tasks. It also provides experience in comparing metric and customary measurement instruments. Unit 5 is designed to give students practice in converting customary and metric measurements. Students should learn to "think metric" and avoid comparing customary and metric units. However, skill with conversion tables will be useful during the transition to metric in each occupation. ## Using These Instructional Materials This package was designed to help students learn a core of knowledge about the metric system which they will use on the job. The exercises facilitate experiences with measurement instruments, tools, and devices used in this occupation and job related tasks of estimating and measuring. This instructional package also was designed to accommodate a variety of individual teaching and learning styles." Teachers are encouraged to adapt these materials to their own classes. For example, the information sheets may be given to students for self-study. References may be used as supplemental resources. Exercises may be used in independent study, small groups, or whole-class activities. All of the materials can be expanded by the teacher. Gloria S Cooper Joel H. Magisos Editors This publication was developed pursuant to contract No. OEC 0-74-9335 with the Bureau of Occupational and Adult Education, U.S. Department of Health, Education and Welfare. However, the opinions expressed herein do not necessarily reflect the position or policy of the U.S. Office of Education and no official endorsement by the U.S. Office of Education should be inferred. ## SUGGESTED TEATHING SEQUENCE - These introductory exercises may require two or three teaching periods for all five areas of measurement. - Exercises should be followed in the order given to best show the relationship between length, area, and volume. - Assemble the metric measuring devices (rules, tapes, scales, thermometers, and measuring containers) and objects to be measured.* - 4. Set up the equipment at work stations for use by the whole class or as individualized resource activities. - Have the students estimate, measure, and record using Exercises 1 through 5. - 6. Present information on notation and make Table 1 available. - Follow up with group discussion of activities. - *Other school departments may have devices which can be used. Metric suppliers are listed in the reference section. ## THE CENTER FOR VOCATIONAL EDUCATION ## **OBJECTIVES** The student will demonstrate these skills for the Linear, Area, Volume or Capacity, Mass, and Temperature Exercises, using the metric terms and measurement devices listed here. | | | 0 | , | EXERCISES | | | |---------|--|---|---|--|---|---| | t i | SKILLS | Linear
(pp. 3 - 4) | Area 0 (pp. 5 · 6) | Volume or Capacity
(pp. 7 - 8) | Mass
(pp. 9 · 10) | Temperature
(p. 11) | | 1.
2 | Recognize and use the unit and its symbol for: Select, use, and read the appropriate measuring instruments for: State a show a physical reference for: | millimetre (mm) centimetre (cm) metre (m) | square centimetre (cm²) square metre (m²) | cubic centimetic (cm³) cubic metre (m³) litre (l) millilitre (m1) | gram (g)
kilogram (kg) | degree Celsius (°C) | | 4. | Estimate within 25% of the actual measure | height, width, or
length of objects | the area of ,
a
given aurface | capacity of containers | the mass of objects, in grams and kilo- | the temperature of
the air or a liquid | | 5. | Read correctly | metre stick, metric
tape measure, and
metric rulers | | measurements
on graduated
volume measur-
ing devices | a kilogram scale
and a gram scale | A Celsilus thermomete | #### RULES OF NOTATION - 1. Symbols are not capitalized unless the unit is a proper name (mm not MM). - 2. Symbols are not followed by periods (m not m.). - 3. Symbols are not followed by an s for plurals (25 g not 25 gs). - 4. A space separates the numerals from the unit symbols (4 l not 4l). - 5. Spaces, not commas, are used to separate large numbers into groups of three digits (45 271 km not 45,271 km). - 6. A zero precedes the decimal point if the number is less than one (0.52 g not .52 g). - 7. Litre and metre can be spelled either with an -re or -er ending. ## METRIC UNITS, SYMBOLS, AND REFERENTS | | | | 5. | |---------------------------------------|------------------------------|-----------------|---| | Quantity | Metric Unit | Symbol | Useful Referents | | Length | millimetre | mm | Thickness of dime or paper
clip wire | | | centimetrè | cm | Width of paper clip | | | metre | m | Height of door about 2 m | | , , , , , , , , , , , , , , , , , , , | kilometre | km | 12-minute walking distance | | Area | square
centimetre | cm ² | Area of this space | | ~ | square metre | m² | Area of card table top | | | hectare | ha' | Football field including sideling and end zones | | Volume and | millilitre g | ml | Teaspoon is 5 ml | | Capacity | litre | 1 | A little more than 1 quart | | | cubic
centimetre | cm ³ | Volume of this container | | | *** | * | | | | cubic metre | m ³ | A little more than a cubic yard | | Mass | milligram
, | mg
1 | Apple seed about 10 mg, grain of salt, 1 mg | | | gram | 88 | Nickel about 5 g = | | ₩. | kilogram | kg | Webster's Collegiate Dictionary | | A | metric ton (1 000 kilograms) | | Volkswagen Beetle | Table 1-a ## METRIC PREFIXES | — | | | | | | | | |-------------------------------|----------------|---------|--|--|--|--|--| | Multiples and
Submultiples | Prefixes (| Symbols | | | | | | | 1 000 000 = 10 ⁶ | mega (meg'a) | М | | | | | | | 1 000 = 10 ³ ., | kilo (kil ō) | · · · k | | | | | | | 100 = 10 ² | hecto (hĕk'tō) | h | | | | | | | 10 = 10 ¹ | deka (děk'á) | da | | | | | | | Base Unit 1 = 10 ⁰ | | | | | | | | | 0.1 = 10 ⁻¹ | deci (des'i) | ď | | | | | | | $0.01 = 10^{-2}$ | Centi (sen ti) | c | | | | | | | $(0.001 = 10^{-3})$ | milli (mil'i) | m | | | | | | | $0.000001 = 10^{-6}$ | micro (mi kro) | μ / | | | | | | | | 1 1 | | | | | | | Table 1-b ## LINEAR MEASUREMENT ACTIVITIES ## Metre, Centimetre, Millimetre ## I. THE METRE (m) #### DEVELOP A FEELING FOR THE SIZE OF A METRE 1. Pick up one of the metre sticks and stand it up on the floor. Hold it in place with one hand. Walk around the stick. Now stand next to the stick. With your a r hand, touch yourself anere the top of the metre stick comes on you. #### THAT IS HOW HIGH A METRE IS! 2. Hold one arm out straight at shoulder height. Put the metre stick along this arm until the end hits the end of your fingers. Where vis the other end of the metre stick? Touch yourself at that end. THAT IS HOW LONG A METRE IS Choose a partner to stand at your side. Move apart .. so that you can put one end of a metre stick on your partner's shoulder and the other end on your shoulder. Look at the space between you. THAT IS THE WIDTH OF A METRE DEVELOP YOUR ABILITY TO ESTIMATE IN METRES Now you will improve your ability to estimate in metres. Remember where the length and height of a metre was on your body. For each of the following items: Estimate the size of the items and write your estimate in the ESTIMATE column. Measure the size with your metre stick and write the answer in the MEASUREMENT column. Decide how close your estimate was to the actual measure. If your estimate was within 25% of the actual measure you are a "Metric Marvel." | | | | Estimate (m) | Measurement (m) | How Close
Were You? | |---------|---------------------------------|-----|--------------|-----------------|------------------------| | l.
• | Height of door knob from floor. | | | | N | | 2 | Height of door. | , . | <u></u> | | | | 3. | Length of table: | | <u> </u> | | | | 1. | Width of table. | ٠, | <u> </u> | | | | ó. | Length of wall of this room. | . ' | | | <u> </u> | | ბ. | Distance from | ٠ | | | | Exercise 1 (continued on next page) | Π ' | THE C | ENTIMETRE (cm) | | | · . | III.ȚTI | HE MILLIMETRE (mm) | | | | |------------|-------|--|-----------------|---------------------|-----------|---|--|---------------|------------------|------------------------| | 4 | | re 100 centimetres in on
netres, you write 403 cm | | | | 2 | here are 10 millimetres in
centimetres and 5 millim
5 mm ² 20 mm + 5 mm] | etres, you x | rite 25 mm [(2 | x 10 mm) | | | Å DE | VELOP A FEELING EC | . , | - A. M. | 1 | Ą. | DEVELOP A FEELIN | s.e | `.` | ILLIMETRE | | • | 2. | How wide is it? Measure your thumb fi | • . | . • | d. / * * | * . · · · · · · · · · · · · · · · · · · | 1. Thickness of a page 2. Thickness of xou | r fingernail. | , | mm | | | • | Se the metric ruler to cm Measure your index or | rfind the wi | dth of your pal | 1 | | 3. Width of your fir4. Diameter (width)5. Diameter (thickn | of a coin. | | | | 7 | 5. | cm Measure many wrist wit around it? f cn | h a tape me | 7, | | ď | 6. Width of a postag | • | | mm | | 4 | 6. | Use the tape measure to | o find your | ا العا | 1 50 | В. | DEVELOP YOUR AB | ILITY TO I | estimate in N | MLLIMETRE | | · . | You | VEĽOP ÝOUR ABILITY
u are now réady to estim | ate in centir | netres. For each | h of the | | You are now ready to following items, follow metres. | | | | | ,
, | | owing items, follow the pares. | 6. | . , | How Close | . | | Estimate (mm) | Measurement (mm) | How Close
Were You? | | . : | 1. | Length of a paper | Esumate
(cm) | Measurement
(cm) | Were You? | 1. | Thickness of a nickel. | | | | | , | 2. | clip. Diameter (width) | • | | • | 2.
3. | Diameter (thickness) of a bolt. Length of a bolt. | • | | | | | 3. | of a coin. Width of a postage stamp. | | | | | Width of a sheet of paper. | | , | , | | <u>ک</u> ا | 4. | Length of a pencil. | · . | | | 5. | Thickness of a board or desk top. | | | | per clip wire. r fingernail. mm gernail." mm of a coin. mm ess) of your pencil. e stamp. 🍃 mm ILITY TO ESTIMATE IN MILLIMETRES estimate in millimetres. For each of the the procedures used for estimating in **How Close** Estimate Measurement Were You? (mm) (mm) . or desk top. Thickness of a button. Width of a sheet of paper. ## AREA MEASUREMENT ACTIVITIES ## Square Centimetre, Square Metre WHEN YOU DESCRIBE THE AREA OF SOMETHING, YOU ARE SAYING HOWMANY SQUARES OF A GIVEN SIZE IT TAKES TO COVER THE SURFACE. | | 6 | ٠. | • | _ | |----|------------------------|---------------------------------------|--------------|----| | T' | THE SQUARE | CONTINUE CO. | ייייין אומיו | 2١ | | ľ | THE SWUARE | CENTIME | LKE CM | ~ | | 41 | Y I'LL D Q O I III I'L | · · · · · · · · · · · · · · · · · · · | ~ / | ٠, | ## DEVELOP A FEELING FOR A SQUARE CENTIMETRE - 1. Take a clear plastic grid, or use the grid on page 6. - Measure the length and width of one of these small squares with a centimetre ruler. ## THAT IS ONE SQUARE CENTIMETRE! - Place your fingernail over the grid. About how many squares does it take to cover your fingernail? - Place a coin over the grid. About how many squares does it take to cover the coin? - Place a postage stamp over the grid. About how many squares does, it take to cover the postage stamp? - Place an envelope over the grid. About how many squares does it take to cover the envelope? - Measure the length and width of the envelope in centimetres. Length _____ cm; width ____ Multiply to find the area in square centimetres. | cm x | cm = | cm°. no | |-----------------------|------------------|-------------| | close are the answers | you have in 6. a | ind in 7.?: | ## DEVELOP YOUR ABILITY TO ESTIMATE IN SQUARE CENTIMETRES You are now ready to develop your ability to estimate in square centimetres. Remember the size of a square centimetre. For each of the following items, follow the procedures used for estimating in metres.. How Close | | , , | | (cm ²) | (cyn ²) | were -i ou | |-----------------------|--------------------------|--------|--------------------|--|------------| | ,
1 _{-5լ} | Index card. | | | 1/ | | | 2. | Book cover. | • | · · · | | . 80 | | 3, | Photograph. | , | <u> </u> | - | , | | 4. | Window pane or desk top. | *
* | - | - <u>+ + + + + + + + + + + + + + + + + + +</u> | , | | | • | | 1 | | • • | ## THE SQUARE METRE (m2) ## A. DEVELOP A FEELING FOR A SQUARE METRE - 1. Tape four metre sticks together to make a square which is one metre long and one metre wide. - 2. Hold the square up with one side on the floor to see how big it is. - Place the square on the floor in a corner. Step back and look. See how much floor space it covers. - Place the square over a table top or desk to see how much space it sovers. - 5. Place the square against the bottom of a door. See how much of the door it covers. How many squares would it take to cover the door? THÌS IS HOW BIG À SQUARE METRE IS Exercise 2 (continued on next page) | | DEVI
METI | ELOP | YOUF | ABI] | LITY | TO ES | STIMA! | ΓĘ IN : | SQUA | ARE, | • | | • ', | | C) | ENT | IMI | ETR | E G | RID | ,
,
, | N. | | , | |-------|-------------------|--|------------------
-------------------|--------------------------|----------|--------------|----------------------------|---|------------------|------------------------|------------|------|----------|-----------|-----|-----|----------|-------|----------|-------------|-----------------|------------|----------------| | • | You | irę no | w read
used f | y to e
or esti | stimate
matine | e in so | quare n | etres | Foļlo | w the | ,
, | | | | | , , | | | | | | 1 | • |] | | | | | | -, | | | , | | . Ua | w Clos | 20.4 | | | , | ľ | | - | | | | | | 1 | | | | | | , | | Estim
(m ² | ate (| Meaşur
(m | rement
1 ²) | Wei | w Cros
re You | se "
!? | | , | | | | * | | | | , | | 1 | | | 1. | Door. | • | , | | | | | ٠ 4 | · | ٠ | ·
- | | | | : [(` , | | | | (| | | | , | 1 | | 2. | Full si
newsp | | f f | , | 7 | _ | | ; | , | , 'a | | , <u> </u> | | | 1 1 | | | - | . 0 ' | <u> </u> | | | + |], | | 3. | Chalk | | | | | | † | | | | | | - | - | | - | - | <u> </u> | | , | | | <u> •</u> | | | 1 | bullet | • | rg, | | - | <u> </u> | | · · · · · · | <i></i> | r | - ' | | • / | , | | | | ¥. | | | | | c a | | | | Wall. | | 1 | • | t
v | <u> </u> | | • | ; | , | -
- J | | | i | | | , | - | ` | | | | i) | | | | Wall cl
Side o | | | | <u></u> | | · · | • | , <u>, , , , , , , , , , , , , , , , , , </u> | | - | | | | , | | 1 | a | | | • | -10 | - | | | , ··. | | · ' ' ' | g . | <i>f.</i> |)
 | • | : | - | · · | i, . | jesti.
Te | | , | 10 | | ,, | , | | | | | ¥.3 | ,
; |]
 -
 , | | | <u>, </u> | | , | | Y. | , | 1 | | | | | | | , 1 | * | : | | | | | | | - | | | | | | , | | | | | | | | | 4 | | | , | * | | | | , | . , | • | | | | | v | · | | | | | , | | | , | | | | | | | | | , | | · | 4
-\-
-\- | • 4 | | | | | | , | | | | | | | | | Ŋ | | | 1 | | | | , | • | | , | | 1 | | | , | | | | | | , , | | • | , | | | | , | Λ | | • | | | A | | , | | | | ٠,, | | | | •. | , | | | | | | | | | , | a | | | 1 | | | | , | | · . | | | | , | | ů. | | | | , | • | , | | | | | | | | 1 | | | | г. | | | | - | 1. | | | | | | | | | | , | | ` | • | | | | , | - | | | | | | | | | <u> </u> | <u> </u> | <u> </u> | <u> </u> | <u>L</u> | <u> </u> | | | L | , | | | <u> </u> | <u> </u> | | | |] | | | , | } | 1 | Exercise 2 ## VOLUME MEASUREMENT ACTIVITIES Cubic Centimetre, Litre, Millilitre, Cubic Metre | THE CUBIC CENTIMETRE (cm³) | | |---|--| | A. DEVELOP A FEELING FOR THE CUBIC CENTIMETRE | DEVELOP YOUR ABILITY TO ESTIMATE IN CUBIC CENTIMETRES | | 1. Pick up a colored plastic cube. Measure its length, height, and width in centimetres. | You are now ready to develop your ability to estimate in cubic centimetres. | | THAT IS ONE CUBIC CENTIMETRE! 2. Find the volume of a plastic litre box. | Remember the size of a cubic centimetre. For each of the following items, use the procedures for estimating in metres. | | a. Place a ROW of cubes against the bottom of one side of the box. How many cubes fit in the row | How Close Estimate Measurement Were You? (cm ³) (cm ³) | | b. Place another ROW of cubes against an adjoining side of the box. How many rows fit inside the box to thake one layer of cubes? | Index card file box. | | How many cubes in each row? 2. | Freezer container. | | How many cubes in the layer in the bottom of the box? | Paper clip box. Box of staples. | | c. Stand a ROW of cubes up against the side of the box. How many IMAYERS would fit in the box? II: TH | E LITRE (1) | | How many cubes in each layer? A. How many cubes fit in the box altogether? A. | DEVELOP A FEELING FOR A LITRE | | THE VOLUME OF THE BOX ISCUBIC | Take a one litre beaker and fill it with water. Pour the water into paper cups, filling each as full as y | | d. Measure the length, width, and height of the box in centimetres. Length cm; width cm; height cm. Multiply these numbers to find the volume in cubic centimetres. | usually do. How many cups do you fill? THAT IS HOW MUCH IS IN ONE LITRE! 3. Fill the litre container with rice. | | $\frac{\text{cm x}}{\text{Are the answers the same in c. and d.?}} = \frac{\text{cm}}{\text{cm}} = \frac{\text{cm}^3}{\text{cm}^3}.$ | THAT IS HOW MUCH IT TAKES TO FILL A ONE LITRE CONTAINER! | | | | Exercise 3 (continued on next page) ## B. DEVELOP YOUR ABILITY TO ESTIMATE IN LITRES You are now ready to develop your ability to estimate in litres. To write two and one-half litres, you write 2.5 l, ar 2.5 litres. To write one-half litre, you write 0.5 l, or 0.5 litre. To write two and three-fourths litres, you write 2.75 l, or 2.75 litres. For each of the following items, use the procedures for estimating in metres. How Close | Estimate Measurement Were You? - 1: Medium-size freezer container. - 2. Large freezer container. - 3. Small freezer container. - 4. Bottle or jug. ## III. THE MINLILITRE (ml) There are 1 000 millilitres in one litre. 1 000 ml = 1 litre. Half a litre is 500 millilitres, or 0.5 litre = 500 ml. ## A. DEVELOP A FEELING FOR A MILLILITRE - 1. Examine a centimetre cube. Anything which holds 1 cm³ holds 1 ml. - 2. Fill a 1 millilitre measuring spoon with rice. Empty the spoon into your hand. Carefully pour the rice into a small pile on a sheet of paper. THAT IS HOW MUCH ONE MILLILITRE IS! Fill the 5 ml spoon with rice. Pour the rice into another pile on the sheet of paper. THAT IS 5 MILLILITRES, OR ONE TEASPOON! 4. Fill the 15 ml spoon with rice. Pour the rice into a third pile on the paper. THĄT IS 15 MILLILITRES, OR ONE TABLESPOON! THE CENTER FOR VOCATIONAL EDUCATION ## B. DEVELOP YOUR ABILITY TO ESTIMATE IN MILLILITRES You are now ready to estimate in millilitres. Follow the procedures used for estimating metres. | • | | Estimate (ml) | Measurement (ml) | How Close
Were You? | |----|-----------------------|---------------|------------------|------------------------| | 1. | Small juice can. | | · · · · · | <u> </u> | | 2. | Paper cup or tea cup. | | | | | 3. | Soft drink can. | | | . 4 | | 4. | Bottle. | | | | ## IV. THE CUBIC METRE (m³) ## A DEVELOP A FEELING FOR A CUBIC METRE - Place a one metre square on the floor next to the wall. - 2. Measure a metre UP the wall. - 3. Picture a box that would fit into that space. THAT IS THE VOLUME OF ONE CUBIC METRE! ## B. DEVELOP YOUR ABILITY TO ESTIMATE IN CUBIC METRES For each of the following items, follow the estimating procedures used before | • | Estimate (m ³) | Measurement (m³) | How Close
Were You? | |---|----------------------------|------------------|------------------------| | | | | | | File | cabi | net. | | |------|------|----------|---| | | | ~ | • | | ~ | | | | Office desk. 3. Small room. ## MASS (WEIGHT) MEASUREMENT ACTIVITIES Kilogram, Gram The mass of an object is a measure of the amount of matter in the object. This amount is always the same unless you add or subtract some matter from the object. Weight is the term that most people use when they mean mass. The weight of an object is affected by gravity; the mass of an object is not. For example, the weight of a person on earth might be 120 pounds; that same person's weight on the moon would be 20 pounds. This difference is because the pull of gravity on the moon is less than the pull of gravity on earth. A person's mass on the earth and on the moon would be the same. The metric system does not measure weight-it measures mass. We will use the term mass here. The symbol for gram is g. The symbol for kilogram is kg. There are 1 000 grams in one kilogram, or 1 000 g = 1 kg. Half a kilogram can be written as 500 g, or ,0.5 kg. A quarter of a kilogram can be written as 250 g,or 0.25 kg. Two and three-fourths kilograms is written as 2.75 kg. ## I. THE KILOGRAM (kg) DEVELOP A FEELING FOR THE MASS OF A KILOGRAM Using a balance or scale, find the mass of the items on the table. Before you find the mass, notice how heavy the object "feels" and compare it to the reading on the scale or balance. - 1. A kilogram box - 2. Textbook. - 3. Bag of sugar. - 4. Pastage of paper - 5. Your own mass A few books. ### B. DEVELOP YOUR ABINITY TO ESTIMATE IN KILOGRAMS For the following items ESTIMATE the mass of the object in kilograms, there use the scale or balance to find the exact mass of the object. Write the exact mass in the MEASUREMENT column. Determine now close your estimate is: | . ' | , . | Estimate (kg) | Measurement (kg) | Were You | |------------|---------------------------|---------------|------------------|----------| | l. | Bag of rice. | | | : | | 2. | Bag of nails. | | | | | 3. 2 | Large purse of briefcase. | | | | | 1. | Another perso | n. | | - (| Exercise 4 (continued on next page) How Close ## II. THE GRAM (g) ## A. DEVELOP A FEELING FOR A GRAM 1. Take a colored plastic cube. Hold it in your hand. Shake the cube in your palm as if shaking dice. Feel the pressure on your hand when the cube is in motion, then when it is not in motion. THAT IS HOW HEAVY A GRAM IS! Take a second cube and attach it to the first. Shake the cubes in first one hand and then the other hand; rest the cubes near the tips of your fingers, moving your hand up and down. THAT IS THE MASS OF TWO GRAMS! 3. Take five cubes in one hand and shake them around. THAT IS THE MASS OF FIVE GRAMS! ## B. DEVELOP YOUR ABILITY TO ESTIMATE IN GRAMS You are now ready to improve your ability to estimate in grams. Remember how fleavy the 1 gram cube is, how heavy the two gram cubes are, and how heavy the five gram cubes are. For each of the following items, follow the procedures used for estimating in kilograms. | 4 | Estimate
(g) | Measurement (g) | How Close
Were You? |
-------------------------------|-----------------|---------------------------------------|------------------------| | Two thumbtacks. | ţ | • سو | 4. | | Pencil. | ١. | | | | Two-page letter and envelope. | | \$ | | | Nickel. | | | | | Apple. | · ; | · · · · · · · · · · · · · · · · · · · | | | Package of A | | | | 3. 5. Exercise 4 ## TEMPERATURE MEASUREMENT ACTIVITIES ## Degree Celsius | I. | DEGREE CELSIUS (°C) | | | • | |------|---------------------------------------|-----|--------------|---| | Degr | ee Celsius (°C) is the metric measure | for | temperature. | | A. DEVELOP A FEELING FOR DEGREE CELSIUS Take a Celsius thermometer. Look at the marks on it. - 1. Find 0 degrees. WATER FREEZES AT ZERO DEGREES CELSIUS (0°C). WATER BOILS AT 100 DEGREES CELSIUS (100°C) - 2. Find the temperature of the room. C. Is the room cool, warm, or about right? - 3. Put some hot water from the faucet into a container. Find the temperature. ____ °C. Dip your finger quickly in and out of the water. Is the water very hot, hot, or just warm? - 4. Put some cold water in a container with a thermometer. Find the temperature: _____ °C. Dip your finger into the water. Is it cool, cold, or very cold? - 5. Bend your arm with the inside of your elbow around the bottom of the thermometer. After about three minutes find the temperature. C. Your skin temperature ture is not as high as your body temperature. NORMAL BODY TEMPERATURE IS 37 DEGREES CELSIUS (37°C). A FEVER IS 39°C. A VERY HIGH FEVER IS 40°C. | B. | DEVELOP YOUR | ABILITY TO | ESTIMAT | E IN DEGREES | |----|--------------|------------|---------|--------------| | | CELSIUS | • | | | For each item, ESTIMATE and write down how many degrees Celsius you think it is. Then measure and write the MEASUREMENT. See how close your estimates and actual measurements are. | | Estimate
(°C) | Measurement
(°C) | Were You? | |------------------|------------------|---------------------|-----------| | Mr. some hot and | | · | | - 1. Mix some hot and cold water in a container. Dip your finger into the water. - 2. Pour out some of the water. Add some hot water. Dip your finger quickly into the water. - 3. Outdoor temperature. - 4. Sunny window sill. - 5. Mix of ice and water. - 6. Temperature at floor. - 7. Temperature at ceiling. Exercise ! # UNIT 2 #### **OBJECTIVÊS** The student will recognize and use the metric terms, units, and symbols used in this occupation. - Given a metric unit, state its use in this occupation. - Given a measurement task in this occupation, select the appropriate metric unit and measurement tool. ## SUGGESTED TEACHING SEQUENCE - 1. Assemble metric measurement tools (rules, tapes, scales, thermometers, etc.) and objects related to this occupation. - 2. Discuss with students how to read the tools. - Present and have students discuss Information Sheet 2 and Table 2. - 4. Have students learn occupationallyrelated metric measurements by completing Exercises 6 and 7. - 5. Test performance by using Section A of "Testing Metric Abilities." ## METRICS IN THIS OCCUPATION Changeover to the metric system is under way. Large corporations are already using metric measurement to compete in the world market. The metric system has been used in various parts of industrial and scientific communities for years. Legislation, passed in 1975, authorizes an orderly transition to use of the metric system. As businesses and industries make this metric changeover, employees will need to use metric measurement in job-related tasks. Table 2 lists those metric terms which are most commonly used in this occupation. These terms are replacing the measurement units used currently. What kinds of jobrelated tasks use measurement? Think of the many different kinds of measurements you how make and use Table 2 to discuss the metric terms which replace them. See if you can add to the list of uses beside each metric term. ## METRIC UNITS FOR SHEET METAL | Quantity | Unit | Symbol | Use, | |-----------------|-------------------|-------------------|--| | Length | micrometre | μm | Surface finishes* | | | millimetre | mm | Screw and bolt lengths and diameters, metal thickness, drill hole size, tool selection, rivets | | • | centimetre | cm | Seam width, length of work bench or table, sheet dimensions | | | metre | m, | Building plans, wire length, angle iron, channel, I-beam, sheet dimensions | | | kilometre | km | Travel distances to customers and suppliers; shipping distances | | Area | square millimetre | mm ² | Area of welding orifice | | () y | square centimetre | cm ² , | Area of an opening or sheet, duct work, pipe | | | square metre | m ² | Floor area, sheet stock | | Volume/Capacity | cubic millimetre | mm³ | Computing material weights | | | cubio centimetré | · cm³ | Size of containers and shaped products, duct work, pip | | | cubic metre | m ³ | Volume of room, storage bin or hopper | | | millilitre | ml | Lubricants, liquid flux, cleaning solutions | | | litre | 1 | Liquid flux, paint | | Mass | gram | g | Mass (weight) of fasteners, chemicals, cleaning compounds, silver solder | | - I | kilogram | kg | Mass (weight) of solder, steel and other materials | | · , J | metric ton | t | Mass (weight) of steel or machinery | | Pressure | kilopascal | kPa | Tire pressure, air and hydraulic systems, tensile strength | | Temperature | degree Celsius | °c | Melting point of metals | ^{*}Surface finish is given in micrometres. Example: 0.1 is a super finish similar to a very fine buff, lap, burnish, or bright polish. Suitable for raceways, ball bearings, and the rolls of anti-friction bearings. Note: The roughness values are the average deviation in micrometres. 1 micrometre = .001 mm THE CENTER FOR VOCATIONAL EDUCATION Table 2 ## TRYING OUT METRIC UNITS | | ve you practice with metric ur
he items below. Write down y | | | | Na | Estimate | Actual | |-----------|--|-----------------------|--|---------------|-----------------------------|-------------------------------|----------------------------| | Then actu | ally measure the item and write
etric-symbols. The more you p | e down your an | swers using the | 16. | Duct work | | | | | | Estimate | Actual | 17. | CO2 cylinder | | | | | | Estimate | Actuar | 18. | Argon cylinder | | | | Length 1. | Template | | | 19. | Acetylene cylinder | | | | 2. | Angle iron legs | | | 20. | Locker | | | | 3. | Flanges of I-beam | | | 21. | Liquid flux bottle | • | | | 4. | Desk height | | | 22. | Capacity of formed contains | er l | , | | 5. | Rivet | | • ! | | | \\ | , | | 6. | Channel iron | | | Mass
⋅ 23. | Welding rod | | | | 7. | Diameter of wire | | | 24. | Lead solder | | | | 8. | Small table height | | | 25. | Brazing rod | | | | 9. | Classroom | | | 26. | Silver solder | | | | Area 4 | Templates | | | 27. | A quantity of steel | \ | , | | 11. | Classroom floor | | | 28. | A litre of water (net) | Ĉ. | | | , 12. | Workbench | 1 | | Tempera | | | | | 13. | Classroom wall | u | | 30. | Outside | | | | 14. | Sheet of paper . | | | 31. | Classroom Hot tap water | • | <u> </u> | | Volume/O | Capacity
Oxygen cylinder | क्राक्तकः । तम्बद्धाः | . a fr a ' v a v a v a v a v a v a v a v a v a | .32. | Cold water | ्यं ब्लाब्ग्य स∾क्षा व | यस्य प्राचार्यस्य स्व
ह | THE CENTER FOR VOCATIONAL EDUCATION Exercise 6 ## FORMING WITH METRICS | | MATTIA MATTITITION | | | | | | |------|---|--|--|--|--|--| | what | It is important to know what metric measurement to use. Show that measurement to use in the following situations. | | | | | | | 1. | Length of steel sheet | | | | | | | 2. | Width of steel sheet | | | | | | | 3. | Area of steel sheet | , | | | | | | 4. | Mass of roll of solder | | | | | | | 5. | Length of roll of wire | ¥ | | | | | | 6. | Volume of a container of machine oil | J | | | | | | 7. | Mass of a machine oil container | | | | | | | 8. | Capacity of air compressor | • | | | | | | 9. | Temperature of flame from hot furnace, welding torch, or propane torch | 1 | | | | | | 10. | Volume of can of metal coating | | | | | | | 11. | Mass of a brazing rod | | | | | | | 12. | Mass of a welding rod rods | | | | | | | 13. | Length of a drill bit | | | | | | | 14. | Diameter of drill bit | . 0 | | | | | | 15. | Volume of liquid flux 2 | | | | | | | 16. | Air pressure on spot welder | द १४वर्षे व्यवस्थात् । स्वत्याचा १४ हा वाचा व्यवस्था स्थितिस्य | | | | | | 17 | Longth of scrows or rivers | | | | | | | 18. Diameter of bolts and screws | | |--------------------------------------|-----| | 19. Wrench sizes | . * | | 20. Caracity of water quenching tank | | | 21. Capacity of a model grain hopper | | | 22. Duct seam width | | | 23. Shipping weight of silver solder | | | 24. Melting temperature of metals | | ### OBJECTIVE The student will recognize and use metric equivalents. Given a metric unit, state an equivalent in a larger or smaller metric unit. ## SUGGESTED TEACHING SEQUENCE - 1. Make available the Information Sheets (3 - 8) and the associated Exercises (8 - 14), one at a time. - As soon as you have presented the Information, have the students complete each Exercise. - Check their answers on the page titled ANSWERS TO EXERCISES AND TEST. - Test performance by using Section B of "Testing Metric Abilities." ## METRIC-METRIC EQUIVALENTS Centimetres and Millimetres Look at the picture of the nail next to the ruler. The nail is 57 mm long. This is 5 cm + 7 mm. There are 10 mm in each cm, so 1 mm = 0.1 cm (one-tenth of a centimetre). This means that $$7 \text{ mm} = 0.7 \text{ cm}, \text{ so } 57 \text{ mm} = 5 \text{ cm} + 7 \text{ mm}$$ $$= 5 \text{ cm} + 0.7 \text{ cm}$$
= 5.7 cm. Therefore 57 mm is the same as 5.7 cm. Now measure the paper clip. It is 34 mm. This is the same as 3 cm + ____mm. Since each millimetre is 0.1 cm (one-tenth of a centimetre), 4 mm = _____cm. So, the paper clip is 34 mm = 3 cm + 4 mm $$= 3 cm + 0.4 cm$$ = 3.4 cm. This means that 34 mm is the same as 3.4 cm. ## Information Sheet 3 Now you try some. $$f$$) 802 mm = ____ cm $$d$$) 680 mm = ____ cm h) 2 307 mm = _____cm Exercise 8 ## Metres, Centimetres, and Millimetres There are 100 centimetres in one metre. Thus, 2 m = 2 x 100 cm = 200 cm. 3 m = 3 x 100 cm = 300 cm, 8 m = 8 x 100 cm = 800 cm, 36 m = 36 x 100 cm = 3 600 cm. There are 1 000 millimetres in one metre, so . 2 m = 2 x 1 000 mm = 2 000 mm. 3 m = 3 x 1 000 mm = 3 000 mm, $6 \, \text{m'} = 6 \, \text{x} \, 1 \, 000 \, \text{mm} = 6 \, 000 \, \text{mm},$ 24 m = 24 x 1 000 mm = 24,000 mm. From your work with decimals you should know that one-half of a metre can be written 0.5 m (five-tenths of a metre), one-fourth of a centimetre can be written 0.25 cm (twenty-five hundredths of a centimetre). This means that if you want to change three fourths of a metre to millimetres, you would multiply by 1 000. So 0.75 m = 0.75 x 1000 mm $=\frac{75}{100} \times 1000 \text{ mm}$ $\frac{1000}{75 \times 100} \text{mm}$ = 75, x 10 mm = 750 mm. This means that 0.75 m = 750 mm. ## Information Sheet 4 Fill in the following chart. 38 | metre
m | centimetre
cm | millimetre
mm | |------------|------------------|------------------| | 1 | 100 | 1 000 | | 2 | 200 | | | 3 | <u> </u> | ١ | | 9 | | | | | | 5 000 | | 74 | | . Δ | | 0.8 | 80 | | | 0.6 | | 600 | | | 2.5 | 25 | | | | 148 | | | 639 | | ## Exercise S ## Millilitres to Litres There are 1 000 millilitres in one litre. This means that 2 000 millilitres is the same as 2 litres, 3 000 ml is the same as 3 litres, 4 000 ml is the same as 4 litres, 12 000 ml is the same as 12 litres. Since there are 1 000 millilitres in each litre, one way to change millilitres to litres is to divide by 1 000. For example, $1000 \text{ ml} = \frac{1000}{1000} \text{ litre} = 1 \text{ litre}.$ $2\ 000\ \text{ml} = \frac{2\ 000}{1\ 000} \, \text{lives} = 2\ \text{litres}.$ And, as a final example, $$\sqrt{28\,000\,\text{ml}} = \frac{28\,000}{1\,000}$$ litres = 28 litres. What if something holds 500 ml? How many litres is this? This is worked the same way. $500 \text{ ml} = \frac{500}{1000}$ litre = 0.5 litre (five-tenths of a litre). So 500 ml is the same as one-half (0.5) of a litre. Change 57 millilitres to litres. 57 ml = $\frac{57}{1000}$ litre = 0.057 litre (fifty-seven thousandths of a litre). ## Information Sheet 5 Now you try some. Complete the following chart. | millilitres
(ml) | litres
(l) | |---------------------|---------------| | 3 000 | 3 | | 6 000 | | | | . 8 | | 14 000 | | | | 23 | | 300
700 | 0.3 | | 700 | | | | 0.9 | | 250 | | | | 0.47 | | 275 | | ## Litres to Millilitres What do you do if you need to change litres to millilitres? Remember, there are 1 000 millilitres in one litre, or 1 litre = 1 000 ml. So, - litres = $2 \times 1000 \text{ ml} = 2000 \text{ ml}$, litres = $7 \times 1000 \text{ ml} = 7000 \text{ ml}$, - litres = $13 \times 1000 \text{ ml} = 13000 \text{ ml}$, - $0.65 \text{ litre} = 0.65 \times 1000 \text{ ml} = 650 \text{ ml}.$ Information Sheet 6 Now you try some. Complete the following chart. | litres
I | millilitres
ml | |-------------|-------------------| | 8. | 8 000 | | 5 | | | 46 | | | | 32 000 . | | 0.4 | | | 0.53 | | | | 480 | Exercise 11 ## Grams to Kilograms There are 1 000 grams in one kilogram. This means that 2 000 grams is the same as 2 kilograms, 5 000 g is the same as 5 kg, 700 g is the same as 0.7 kg, and so on. To change from grams to kilograms, you use the same procedure for changing from millilitres to litres. Information Sheet 7 Try the following ones. | grams
g | kilograms
kg | |------------|-----------------| | 4 000 | 4 | | 9 000 | 8 | | 23 000 | | | | 8 . | | 300 | | | 275 | | Exercise 12 ## Kilograms to Grams To change kilograms to grams, you multiply by 1 000. Information Sheet 8 Complete the following chart. | kilograms
kg . | grams
• g | |-------------------|--------------| | 7 | 7 000 | | 11 | | | | 25 000 | | 0.4 | | | 9.63 | | |) (| 175 | Exercise 13 ## Changing Units at Work Some of the things you use in this occupation may be measured in different metric units. Practice changing each of the following to metric equivalents by completing these statements. | • | | |---------------------------------|------| | a) 500 cm of soldering wire is | m | | b) 250 ml of solution is | l | | c) 5 cm diameter pipe is | m | | d) 2 500 g of rivets is | ke | | e) 120 mm bolt is | · cn | | f) 0.25 litre of liquid is | m | | g) 2 kg of powdered flux is | g | | h) 500 g of solder is | kg | | i) 500 ml of metal coating is | l | | j) 2 000 kg of sheet metal is | t. | | k) 2 m length of sheet metal is | m | | 1) 0.5 t of channel iron is | kg | | m) 10 m of wire is | cm | | n, i0 cm bolt is | nor | | o) 1 cm diameter bolt is | , mi | | p) 5 mm diameter bolt is | cn | | | | # UNIT 4 #### **OBJECTIVE** The student will recognize and use instruments, tools, and devices for measurement tasks in this occupation. - Given metric and Customary tools, instruments, or devices, differentiate between metric and Customary. - Given a measurement task, select and use an appropriate tool, instrument or device. - Given a metric measurement task, judge the metric quantity within 25% and measure to 5% accuracy. ## SUGGESTED TEACHING SEQUENCE - 1. Assemble metric and Customary measuring tools and devices (rules, scales, ⁰C thermometer, drill bits, wrenches, micrometer, vernier calipers, feeler gages) and display in separate groups at learning stations. - 2. Have students examine metric tools and instruments for distinguishing characteristics and compare them with Customary tools and instruments. . ζ¦m - 3. Have students verbally describe characteristics. - Present or make available Information Sheet 9. - 5. Mix metric and Customary tools or Equipment at learning station. Give students Exercises 15 and 16. - 6. Test performance by using Section C of "Festing Metric Abilities." ## SELECTING AND USING METRIC INSTRUMENTS, TOOLS AND DEVICES Selecting an improper tool or misreading a scale can result in an improper sales form, damaged materials, or injury to self or fellow workers. For example, putting a load of metal with a mass of 2 000 kilograms (about 4400 pounds) on a one-ton electric crane designed to hoist 2000 pounds could cause a serious accident. Here are some suggestions: - 1. Find out in advance whether Customary or metric units, tools, instruments, or products are needed for a given task. - 2. Examine the tool or instrument before using it. - 3. The metric system is a decimal system. Look for units marked off in whole numbers, tens or tenths, hundreds or hundredths. - 4. Look for metric symbols on the tools or gages such as m, mm, kg, g, kPa. - 5. Look for decimal fractions (0.25) or decimal mixed fractions (2.50) rather than common fractions (3/8) on drill bits, wrenches, and gages. - 6. Some products may have a special metric symbol such as a block M to show they are metric. - 7. Don't force bolts, wrenches, or other devices which are not fitting properly. - 8. Practice selecting and using tools, instruments, and devices. ## WHICH TOOLS FOR THE JOB? Practice and prepare to demonstrate your ability to identify, select, and use metric-scaled tools and instruments for the tasks given below. You should be able to use the measurement tools to the appropriate precision of the tool, instrument, or task. - 1. Check the thickness of a steel sheet. - 2. Determine the length and the diameter of a bolt. - 3. Find the length of a screw. - 4. Find the width and length of a steel sheet. - 5. Prepare a dipping solution for soldering irons. The directions state: Mix 15 g of powdered sal ammoniac with 950 ml of water. - 6. Select rivets to assemble a product. - 7. Space spot welds on a product. - Calculate the materials needed to fill a customer order for 12 custom-made painted metal louvers. - 9. Check the air pressure in a power paint sprayer. - 10. Order pop rivets for a shop project. - 11. Calculate the thermoplastic welding rod needed for a customer order. - 12. Select a sheet metal punch for a specified hole size. - 13. Inspect drilled or punched-holes in a mass produced product. - Bend a piece of aluminum or steel to form a channel 10 cm wide by 15 cm long with flanges 3 cm in height. ## MEASURING UP IN SHEET METAL WORKING For the tasks below, estimate the metric measurement to within 25% of actual measurement, and verify the estimation by measuring to within 5% of actual measurement. | | | <u> </u> | | |-----|---|--------------|------------| | · | 4 | Estimate | Verify | | 1. | Area of template for a product | _ •. | | | 2. | Magimum width of steel sheet which can be cut in a shear press | | | | 3. | Diameter of drill for a 12 mm hole | | , | | 4. | Length of sheet metal screw for a 10 mm specification | | | | 5. | Diameter of rivet for a 3 mm specification | | 4 | | 6. | Shearing machine setting to shear a 10 mm wide strip | | | | 7. | Machine setting for a 6 mm seam or hem | | | | 8. | Diameter of a bar to use in bending operations | • | | | 9. | Diameter of a bar for making narrow reverse bends | ? : • | : | | 10. | Dimensions of a scrap of sheet that would form, with least waste of material, a one-litre box 10 cm by 10 cm on a side: | 34.4.1 | es o graph | | | a. Length | | | | | b. Width | | | | 11. | Quantity of sheet metal screws with a mass of 500 g | | , | | | | | | # UNIT #### **OBJECTIVE** The student will recognize and use metric and Customary units interchangeably in ordering, selling, and using products and supplies in this
occupation. - Given a Customary (or metric) measurement, find the metric (or Customary) equivalent on a conversion table. - Given a Customary unit, state the replacement unit. ## SUGGESTED TEACHING SEQUENCE - 1. Assemble packages and containers of materials. - 2. Present or make available Information Sheet 10 and Table 3. - Have students find approximate metric-Customary equivalents by using Exercise 17. - 4. Test performance by using Section D of "Testing Metric Abilities." ## METRIC-CUSTOMARY EQUIVALENTS During the transition period there will be a need for finding equivalents between systems. Conversion tables list calculated equivalents between the two systems. When a close equivalent is needed, a conversion table can be used to find it. Follow these steps: - 1. Determine which conversion table is needed. - 2. Look up the known number in the appropriate column; if not listed, find numbers you can add together to make the total of the known number. - 3. Read the equivalent(s) from the next column. Table In the next page gives an example of a metric-Customary conversion table which you can use for practice in finding approximate equivalents. Table 3 can be used with Exercise 17, Part 2 and Part 3. Below is a table of metric-Customary equivalents which tells you what the metric replacements for Customary units are.* This table can be used with Exercise 17, Part 1 and Part 3. The symbol \approx means "nearly equal to." | | | , | | | |---|---|--|---|--| | | 1 cm ≈ 0.39 inch | 1 inch ≈ 2.54 cm | $1 \text{ ml} \approx 0.2 \text{ tsp}$ | 1 tsp ≈ 5 ml | | | 1 m ≈ 3.28 feet | 1 foot ≈ 0.305 m | $1 \text{ ml} \approx 0.07 \text{ tbsp}$ | 1 tbsp ≈ 15 ml | | | $1 \text{ m} \approx 1.09 \text{ yards}$ | 1 yard ≈ 0.91 m | $1 \approx 33.8 \text{ fl oz}$ | 1 fl oz \approx 29.6 ml | | | $1 \text{ km} \approx 0.62 \text{ mile}$ | 1 mile ≈ 1.61 km | $1 \approx 4.2 \text{ cups}$ | 1 cup ≈ 237 ml | | | $1 \text{ cm}^2 \approx 0.16 \text{ sq in}$ | 1 sq in $\approx 6.5 \text{ cm}^2$ | $1 \mid \approx 2.1 \text{ pts}$ | 1 pt ≈ 0.47 l | | | $1 \text{ m}^2 \approx 10.8 \text{ sq ft}$ | $1 \text{ sq ft} \approx 0.09 \text{ m}^2$ | $1.1 \approx 1.06 \text{ qt}$ | 1 qt ≈ 0.95 l | | | $1 \text{ m}^2 \approx 1.2 \text{ sq yd}$ | $1 \text{ sq yd} \approx 0.8 \text{ m}^2$ | $1 l \approx 0.26 \text{ gal}$ | $1 \text{ gal} \approx 3.79 \text{ l}$ | | 1 | hectare ≈ 2.5 acres | 1 acre ≈ 0.4 hectare | 1 gram ≈ 0.035 oz | $1 \text{ oz} \approx 28.3 \text{ g}$ | | | $1 \text{ cm}^3 \approx 0.06 \text{ cu in}$ | 1 cu in ≈ 16.4 cm ³ | 1 kg ≈ 2.2 lb | 1 lb ≈ 0.45 kg | | | $1 \text{ m}^3 \approx 35.3 \text{ cu ft}$ | 1 cu ft $\approx 0.03 \text{ m}^3$ | 1 metric ton ≈ 2205 lb | 1 ton ≈ 907.2 kg | | | $1 \text{ m}^3 \approx 1.3 \text{ cu yd}$ | $1 \text{ cu yd} \approx 0.8 \text{ m}^3$ | $1 \text{ kPa} \approx 0.145 \text{ psi}$ | 1 psi ≈ 6.895 kPa | | | | • | | | ^{*}Adapted from Let's Measure Metric. A Teacher's Introduction to Metric Measurement. Division of Educational Redesign and Renewal, Ohio Department of Education, 65 S. Front Street, Columbus, OH 43215, 1975. ## **CONVERSION TABLES** | MILI | IMETRES | $T \cap$ | INCUPO | |--------|----------------|----------|-------------| | 141111 | HRIE I BES | 447 | IINI .HE.S. | | mm | Inches | mm | Inches | mm | Inches | mm | Inches | |-----|--------|-----|--------|-----|--------|-----|--------| | 100 | 3.93 | 10 | 0.39 | 1 | 0.04 | 0.1 | 0.004 | | 200 | 7.87 | 20 | 0.79 | 2. | 0.08 | 0.2 | 0.008 | | 300 | 11.81 | 30, | 1.18 | 3 . | 0.12 | 0.3 | 0.012 | | 400 | 15.74 | 40 | 1.57 | 4/ | 0.16 | 0.4 | 0.016 | | 500 | 19.68 | 50 | 1.97 | 5 | 0.20 | 0,5 | 0.020 | | 600 | 23.62 | 60 | 2.36 | 6 | 0.24 | 0.6 | 0.024 | | 700 | 27.56 | 70 | 2.76 | 7 | 0.28 | 0.7 | 0.028 | | 800 | 31.50 | 80 | 3.15 | 8 | 0.31 | 0.8 | 0.031 | | 900 | 35.43 | 90 | 3.54 | 9 | 0.35 | 0.9 | 0.035 | 1 000 mm or 1 metre = 39.37 inches ## INCHES TO MILLIMETRES | Inche | mm | Inches | mm | Inches | mm | Inches | mm | |----------------------|-------|--------|-------|--------|------|--------|------| | 1 | 25.4 | 0.1 | 2.54 | .01 | 0.25 | .001 | 0.03 | | 2 | 50.8 | 0.2 | 5.08 | .02 | 0.51 | .002 | 0.05 | | 3 | 76.2 | 0.3 | 7.62 | .03 | 0.76 | .003 | 0.08 | | 4 | 101.6 | 0.4 | 10.16 | .04 | 1.02 | .004 | 0.10 | | 5 | 127.0 | 0.5 | 12.70 | .05 | 1.27 | .005 | 0.13 | | 6 | 152.4 | 0.6 | 15.24 | .06 | 1.52 | .006 | 0.15 | | $ au_{\Sigma_{i_1}}$ | 177.8 | 0.7 | 17.78 | .07 | 1.78 | .007 | 0.18 | | 8 | 203.2 | 0.8 | 20.32 | .08 | 2.03 | .008 | 0.20 | | 9 | 228.6 | 0.9 | 22.86 | .09 | 2.29 | .009 | 0.23 | 10 inches = 254 mm 12 inches or 1 feet = 304.8 mm or 30.48 cm Table 3 ## ANY WAY YOU WANT IT You are working in a sheet metal shop. With the change to metric measurement some of the things you order, sell or use are marked only in metric units. You will need to be familiar with appropriate Customary equivalents in order to communicate with customers and suppliers who use Customary units. To develop your skill use the Table on Information Sheet 10 and give the approximate metric quantity (both number and unit) for each of the following Customary quantities. | | Customary Quantity | Metric Quantity | |-----|-----------------------------|---------------------------------------| |) | 2 lbs. of aluminum | | |) | 4 qts. qf solvent | m fo | |) | 3/4 in pipe | 154. | |) | 100 lbs. of tin | | |) | 36 in, bender | , . | |) | 2 gal. can of paint | , • | | () | 1 pt. of liquid flux | | |) | 4 fl. oz. can of spray | · · · · · · · · · · · · · · · · · · · | |) | 4 in. wide paint brush | | |) | 50 yd. roll of wire | | |) | 1/4 in. drill bit | | |) | 1 in. bolt | | | 1) | 1 lb. roll of solder | V 1 | |) | 4 ft. wide galvanized sheet | | | | 2 lbs. of screws | <u> </u> | - 3. Complete the Requisition Form using the items listed. Convert the Customary quantities to metric before filling out the form. Complete all the information (Date, For, Job No., etc.). Order the following sheet metal supplies: - a) Two 1 gal. cans of zinc chromate primer - b) Ten 1 lb. rolls of 50/50 solder - c) Three 1/4 in. drill bits - d) Six 2 in. nylon paint brushes - e) Two 1 pt. bottles of liquid flux | | REQU | ISITION | |-----------|--|-------------------| | · . | | Date | | For | , | , | | • | Wagner C | | | Job No. | | Date Wanted | | | | | | | | The second second | | QTY | UNIT | ITEM | | | | | | | | | | | · | • | | Requested | l by (| <u> </u> | | | by <u>· </u> | | d) 2 mm = #### **SECTION A** - 1. One kilogram is about the mass of a: - [A] nickel - [B] apple seed - [C] basketball • - [D] Volkswagen "Beetle" - 2. A square metre is about the area of: - [A] this sheet of paper - [B] a card table top - [C] a bedspread - [D] a postage stamp - 3. The length of screws is measured in: - [A] metres - [B] pascals - [C] millimetres - [D] millilitres - 4. The mass of steel is measured in: - [A] kilograms - [B] centimetres - [C] cubic metres - ¹ [D] millilitres - 5. The correct way to write twenty . ? grams is: - [A] 20 gms - [B] 20 Gm. - [C] 20 g. - [D] 20 g - 6. The correct way to write twelve thousand millimetres is: - [A] 12,000 mm. - [B] 12.000 mm - [C] 12.000mm - [D] 12 000 mm #### SECTION B - A sheet of metal 20 centimetres wide is the same as: - [A] 0.2 millimetre - [B] 2 millimetres - [C] 2 000 millimetres - [D] 200 millimetres - 8. A 750 gram sack of rivets is the same as: - [A] 7.5 kilograms - [B] 0.75 kilogram - [C] 7 500 kilograms - [D]. 750 000 kilograms #### SECTION C - 9. For measuring in millimetres you would use a: - [A] rule - [B] container - [C] pressure gage - [D] scale - 10. For measuring kilopascals you would use a: - [A] scale - [B] rule - [C] pressure gagè - [D] container - 11. Estimate the length of the line segment below: - [A] 23 grams - [B] 6 centimetres - [C] 40 millimetres - [D] 14 pascals - 12. Estimate the length of the line segment below: - [A] 10 millimetres - [B] 4 centimetres - [C] 4 pascals - [D] 23 milligrams #### SECTION D - 13. The metric unit which replaces the fluid ounce is: - [A] litre - [B] gram - [C] cubic metre - [D] millilitre - 14. The metric unit which replaces the gallon is: - [A] millilitre - [B] litre - [C] cubic metre - [D] kilogram Use this conversion table to answer questions 15 and 16. | m | in. | in. | mm | |-----|-------|-----|-------| | 1 | 0.04 | 1 | 25.4 | | 2 | 0.08 | 2 | 50.8 | | 3. | 0.12 | 3 | 76.2 | | 4 | 0.16 | 4 | 101.6 | | 5 | 0.20 | 5 | 127.0 | | 6 | 0.24 | 6 | 152.4 | | 7 | ∘0.28 | 7 | 177.8 | | 8 ` | · 041 | 8 | 203.2 | | 9 | 0.35 | 9 | 228.6 | | 10 | 0.39 | 10 | 254.0 | - 15. The equivalent of 15 mm is: - [A] 2.5 in. - [B] 0.59 in. - [C] 1.5 in. - [D] 381 in. - 16. The equivalent of 18 in. is: - [A] 254.2 mm - [B] 26 mm - [C] 457.2 mm - [D] 18 mm ## ANSWERS TO EXERCISES AND TEST ## **EXERCISES 1 THRU 6** The answers depend on the items used for the activities. #### EXERCISE 7 Currently accepted metric units of measurement for each question are shown in Table 2. Standards in each occupation are being established now, so answers may vary. #### **EXERCISE 8** | a) | 2.6 cm | e) | 13.2 cm | |----|---------|----|----------| | b) | 58.3 cm | f) | 80.2 cm | | c) | 9.4 cm | g) | 140.0 cm | | 41 | 68 A cm | ĥ١ | 230.7 cm | ### **EXERCISES 9 THRU 13** Tables are reproduced in total. Answers are in parentheses. ### Exercise 9 | metre
m | centimetre
cm | millimetre
mm | |------------|--------------------|------------------------| | 1 , | 100 | 1 000 | | 2. | 200 | (2.000) | | 3 | (300) | (3 000) | | 9 | (900) | (9 000) | | (5) | (500) | 5 00 0 . | | 74 | .(7 400) | 174 0001 | | 0.8 | 80 | (800) | | 0.6 | (60) | 600 | | (0.025) | 2.5 ₃ . | 25 | | (0.148) | (14.8) | 148 | | (6.39) | 639 | (6 390) | NVÉR FOR VOCATIONAL EDUCATIÓN ####
Exercise 10 | · | | |-------------------|-------------| | millilitres
ml | litres
l | | - | | | 3 000 | 3 | | 6 000 | (6) | | (8 000) | 8 | | (14 000) | (14) | | (23 000) | 23 | | 300 | 0.3 | | 700_ | (0.7) | | (900) | 0.9 | | 250 | (0.25) | | . (470) | 0.47 | | 275 | (0.275) | #### Exercise 11 | litres
l | millilitres
ml | |-------------|-------------------| | /8 | 8 000 | | 5. | (5 000) | | 46 | (46 000) | | (32) | 32 000 | | 0.4 | (400) | | ₹ 0.53 | (530) | | (0.48) | 480 | ## Exercise 12 | ` | | |------------|-----------------| | grams
g | kilograms
kg | | | - | | 4 000 | 4 | | 9 000 4 | (9) | | 23 000 | . (23) | | (8 000) | 8. | | 300 | (0.3) | | 275 | (0.275) | ### Exercise 13 | | kilograms
kg | grams
g | |---|-----------------|------------| | | 7 | 7,000 | | | 11 . | (11 000) | | | (25) | 25 000 | | | 0.4 | (400) | | | 0.63 | (630) | | Į | (0.175) | 175 ′ | ## Exercise 14 | a) | 5 m | i) | 0.5 litre | |------------|------------|-------|-----------| | b) | 0.25 litre | · j) | 2 t | | c) | 50 mm | 5 k) | 2 000 mm | | d ') | 2.5 kg | l,) | 500 kg | |-------------|--------|-----|----------| | e) | 12 cm | m) | 1 000 cm | | f |) | 250 ml | | n) | 100 mm | |---|----|--------------------|---|------------------|--------| | g |), | $2~000~\mathrm{g}$ | , | o) [,] | 10 mm | | h) | 0.5 kg | p) | 0.5 cm | |----|--------|-----|--------| | | | | 4 | ## ► EXERCISES 15 AND 16 The answers depend on the items used for the activities. i) 10.16 cm ## EXERCISE 17 a) 0.9 kg ## Part 1. | | b) | 3.8 litres | j) | 45.5 m | |---|------|-------------|------|---------| | | c) | 1.905 cm | k) | 0.635 c | | | ď) | 45 kg | 1) | 2.54 cm | | | e)` | 91.44 cm | m) . | 0.45 kg | | (| f) | 7.58 litres | n) | 1,22 m | | | .g) | 0.47 litre | φ) | 0.9 kg | | | h) | 118.4 ml | , | • | ## Part 2. | a) 0.05 | mm | |---------|----| |---------|----| #### Part 3. - a) 7.58 litres - b) 4.5 kg - c) 0.635 cm - d) 5.08 cm - e) 1.9 litres ## TESTING METRIC ABILITIES | 1. | С | 9. | ·Α | |----|---|----|----| | ^ | - | 40 | ~ | d) 0.08 in. # SUGGESTED METRIC TOOLS AND DEVICES NEEDED TO COMPLETE MEASUREMENT TASKS IN EXERCISES 1 THROUGH 5 (* Optional) #### LINEAR Metre Sticks Rules, 30 cm Measuring Tapes, 150 cm *Height Measure *Metre Tape, 10 m *Trundle Wheel *Area Measuring Grid *Area Measuring Grid #### VOLUME/CAPACITY *Nesting Measures, set of 5, 50 ml - 1 000 ml Economy Beaker, set of 6, 50 ml - 1 000 ml Metric Spoon, set of 5, 1 ml - 25 ml Dry Measure, set of 3, 50, 125, 250 ml Plastic Litre Box Centimetre Cubes #### MASS *Kilogram Scale *Kilogram Scale *Platform Spring Scale 5 kg Capacity 10 kg Capacity Balance Scale with 8-piece mass set *Spring Scale, 6 kg Capacity #### **TEMPERATURE** **Celsius Thermometer** ## SUGGESTED METRIC TOOLS AND DEVICES NEEDED TO COMPLETE OCCUPATIONAL MEASUREMENT TASKS ~ In this occupation the tools needed to complete Exercises 6, 15, and 16 are indicated by "*." - * A. Assorted Metric Hardware—Hex nuts, washers, screws, cotter pins, etc. - * B. Drill Bits-Individual bits or sets, 1 mm to 13 mm range - * C. Vernier Caliper—Pocket slide type, 120 mm range - ★ D. Micrometer—Outside micrometer caliper, 0 mm to 25 mm range - E. Feeler Gage—13 blades, 0.05 mm to 1 mm range - F. Metre Tape-50 or 100 m tape - G. Thermometers—Special purpose types such as a clinical thermometer - H. ¹ Temperature Devices—Indicators used for ovens, freezing/cooling systems, etc. - I. Tools—Metric open end or box wrench sets, socket sets, hex key sets - J. Weather Devices—Rain gage, barometer, humidity, wind velocity indicators - * K. 1 Pressure Gages—Tire pressure, air, oxygen, hydraulic, fuel, etc. - L. 1 Velocity-Direct reading or vane type meter - M. Road Map-State and city road maps - N. Containers—Buckets, plastic containers, etc., for mixing and storing liquids - O. Containers—Boxes, buckets, cans, etc., for mixing and storing dry ingredients Most of the above items may be obtained from local industrial, hardware, and school suppliers. Also, check with your school district's math and science departments and/or local industries for loan of their metric measurement devices. ¹Measuring devices currently are not available. Substitute devices (i.e., thermometer) may be used to complete the measurement task. **Tools and Devices List** ## REFERENCES Let's Measure Metric. A Teacher's Introduction to Metric Measurement. Division of Educational Redesign and Renewal, Ohio Department of Education, 65 S. Front Street, Columbus, OH 43215, 1975, 80 pages; \$1.50, must include check to state treasurer. Activity-oriented introduction to the metric system designed for independent or group inservice education study. Introductory information about metric measurement; reproducible exercises apply metric concepts to common measurement situations; laboratory activities for individuals or groups. Templates for making metre tape, litre box, square centimetre grid. Measuring with Meters, or, How to Weigh a Gold Brick with a Meter-Stick. Metrication Institute of America, P.O. Box 236, Northfield, IL 60093, 1974, 23 min., 16 mm, sound, color; \$310.00 purchase, \$31.00; ental. Film presents units for length, area, volume and mass, relating each unit to many common objects. Screen overprints show correct use of metric symbols and ease of metric calculations. Relationships among metric measures of length, area, volume, and mass are illustrated in interesting and unforgettable ways. Metric Education, An Annotated Bibliography for Vocational, Technical and Adult Education. Product Utilization, The Center for Vocational Education, The Ohio State University, Columbus, OH 43210, 1974, 149 pages; \$10.00. Comprehensive bibliography of instructional materials, reference materials and resource list for secondary, post-secondary, teacher education, and adult basic education. Instructional materials indexed by 15 occupational clusters, types of materials, and educational level. Metric Education, A Position Paper for Vocational, Technical and Adult Education. Product Utilization, The Center for Vocational Education, The Ohio State University, Columbus, OH 43210, 1975, 46 pages; \$3.00. Paper for teachers, curriculum developers, and administrators in vocational, technical and adult education. Covers issues in metric education, the metric system, the impact of metrication on vocational and technical education, implications of metric instruction for adult basic education, and curriculum and instructional strategies. Metrics in Career Education. Lindbeck, John R., Charles A. Bennett Company, Inc., 809 W. Detweiller Drive, Peoria, IL 61614, 1975, 103 pages, \$3.60, paper; \$2.70 quantity school purchase. Presents metric units and notation in a well-illustrated manner. Individual chapters on metrics in drafting, metalworking, woodworking, power and energy, graphic arts, and home economics. Chapters followed by several learning activities for student use. Appendix includes convenion tables and charts. Taking the Tricks Out of Metrics. Metric Training Department, Creative Universal, Inc., Tower 14, 21700 Northwestern Highway, Southfield, MI 48975, 1976, 4 booklets; \$3.00 each, \$12.00 set, discounts. Series of booklets presents step-by-step directions, questions, answers on how to read metric measurement tools: micrometers, vernies calipers, rules, dial indicators. #### METRIC SUPPLIERS Brown and Sharpe Manufacturing Co, Precision Park, North Kingstown, RI 02852 Industrial quality micrometers, steel rules, screw pitch and thickness gages, squares, depth gages, calipers, dial indicators, conversion charts and guides. Central instrument Company, 900 Riverside Drive, New York, NY 10032 Drafting rules and scales for drafting, engineering, architecture, conversion tables and alides, posters, teaching aids, drafting templates. Dick Blick Company, P.O. Box 1267, Galesburg, IL 61401 Instructional quality rules, tapes, metre sticks, cubes, height measures, trundle wheels, measuring cups and spoons, personal scales, gram/kilogram scales, feeler and depth gages, beakers, thermometers, kits and other aids. The L. S. Starrett Company, 121 Crescent Street, Athol, MA 01331 Machine tool precision measuring devices, micrometers, calipers, dial indicators, steel rules. Millimeter Industrial Supply Corp., 162 Central Avenue, Farmingdale, L. I., NY 11735 Industrial fasteners, taps, dies, reamers, drills, wrenches, rings, bushings, calipers, steel rules and tapes, feeler gages. Ohaus Scale Corporation, 29 Hanover Road, Florham Park, NJ 07982 Instructional quality and precision balances and scales, plastic calipers and stackable gram cubes for beginners. Regal-Beloit Corporation, Box 38, South Beloit, IL 61080 Machine fasteners, gages, taps and dies, precision micrometers, calipers, steel rules, inspection devices. #### INFORMATION SOURCES American National Metric Council, 1625 Massachusetts Avenue, N.W., Washington, D C 20036 Charts, posters, reports and pamphlets, Metric Reporter newaletter. National metric coordinating council representing industry, government, education, professional and trade organizations. National Bureau of Standards, Office of Information Activities, U.S. Department of Commerce, Washington, D.C. 20234. Free and inexpensive metric charts and publications, also lends films and displays.